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Abstract
Remote photoplethysmography (rPPG) and remo-
te ballistocardiography (rBCG) are promising tech-
niques for contactless cardiovascular monitoring. 
Both modalities can estimate heart rate (HR) and 
heart rate variability (HRV), but each has specific li-
mitations: rPPG is sensitive to lighting and skin pig-
mentation, whereas rBCG is less affected by these 
factors but generally noisier. Shen.AI has developed 
a multimodal, signal-quality–driven approach that 
dynamically selects or combines modalities based on 
confidence metrics to optimize performance.
We evaluated this strategy in a large cohort of 5,311 
participants spanning a broad demographic spec-
trum (mean age 53.8 years, 64.7% female). Data 
acquisition involved simultaneous recording of fa-
cial video (rPPG), micro-movement signals (rBCG), 
and pulse oximetry (ground truth). Each 60-second 
recording was segmented, and HR and HRV (SDNN) 
were computed for each modality. Quality scores 
were assigned to every window, enabling the best-of 
algorithm to select the modality with higher expec-
ted accuracy.
Results showed that rPPG achieved near-identity 
agreement with the reference for HR (MAE ≈ 0.37 

bpm, R = 0.99), while rBCG exhibited higher error 
overall (MAE ≈ 3.6 bpm, R = 0.82) but markedly im-
proved in high-quality windows. For SDNN, rPPG 
again outperformed rBCG (MAE ≈ 6 ms vs 36 ms), 
though variability estimates were inherently more 
error-prone than HR. Applying the best-of strategy 
yielded measurable gains: HR error was reduced by 
~3% and SDNN by ~7% overall. Stratification by Fitz-
patrick skin type highlighted equity-relevant pat-
terns: rPPG error increased progressively with darker 
phototypes (III–VI), whereas rBCG remained stable. 
The selector accordingly shifted weight toward rBCG 
in these subgroups, mitigating disparities. At photo-
type VI, SDNN accuracy improved by ~18%, while HR 
error remained below 1.3 bpm.
These findings demonstrate that multimodal, quali-
ty-gated selection effectively leverages the comple-
mentary strengths of rPPG and rBCG, ensuring ro-
bust and equitable contactless measurement of HR 
and HRV across a large, diverse population. Future 
work should extend validation to additional HRV en-
dpoints (e.g., RMSSD, frequency-domain measures), 
unconstrained real-world settings, and clinical co-
horts with arrhythmias or impaired perfusion.

Remote monitoring methods such as photoplethy-
smography (rPPG) and ballistocardiography (rBCG) 
are gaining popularity in telemedicine and consumer 
health applications. Their potential to assess heart 
rate (HR) and heart rate variability (HRV)—impor-
tant indicators of autonomic nervous system activity 
and overall health—is particularly promising.
In this study, we investigate a multimodal approach 
developed by Shen.AI, which combines rPPG and 
rBCG signals to predict HR and HRV. The system dy-
namically evaluates the quality of each signal moda-
lity using dedicated quality metrics and selects the 
optimal input for final prediction. This signal-aware 
selection strategy aims to maximize accuracy in he-
terogeneous real-world conditions, such as varying 
lighting, motion, and diverse skin tones.
HR and HRV are clinically significant parameters 

used in a wide range of applications, including car-
diovascular risk monitoring, mental stress and fati-
gue assessment, sleep quality evaluation, and early 
detection of arrhythmias. HRV in particular is a non-
-invasive biomarker of autonomic nervous system 
regulation and is associated with overall health, re-
silience to stress, and mortality risk. Continuous and 
reliable remote estimation of these metrics opens 
new opportunities for preventive care, chronic dise-
ase management, and digital therapeutics.
The objective of this study is to evaluate the effecti-
veness of the Shen.AI multimodal system for estima-
tion of HR and HRV against the ground truth results 
obtained from pulsoxymetry measurements, across 
different subject demographics.

1. Introduction



The data acquisition process in this study involved a 
custom data collection protocol, for which the team 
obtained approvals from the Bioethics Committee of 
the Medical University of Wrocław and the Lower Si-
lesia Chamber of Physicians.
Recording of participants’ facial videos and the col-
lection of pulse oximetry-based reference measure-
ments under controlled conditions were performed 
simultaneously. Recordings were conducted in three 
one‑minute measurement sessions. A smartphone 
with a camera was mounted on a stable tripod equip-
ped with an LED lamp, providing uniform and direct 
facial illumination while avoiding light reflections. 
Participants were seated with their feet flat on the 
floor and their forearm supported on a table or thigh, 
maintaining their face centrally aligned in the came-
ra frame and positioned perpendicularly to the lens. 
During recording, participants remained motionless, 
refrained from facial expressions or speaking, and 
ensured that the skin of the face was fully exposed. 
Throughout the measurements, signals from a Blu-
etooth-connected pulse oximeter (Berry BM1000C) 
were recorded simultaneously with video to confirm 
heart rate values and interbeat intervals. The in-
tervals were calculated as a time difference between 
consecutive peaks in photoplethysmographic signal. 

Participant metadata were collected, including 
age, sex, height, weight, Fitzpatrick scale of the 
skin tone and information regarding hyperten-
sion, diabetes, smoking, arrhythmia, or anemia.
3 types of information were extracted separately 
from both PPG and rBCG signals, during a 60-se-
conds continuous measurement:

•	 Inter-beat (IBI) intervals, expressed in    mil-
liseconds
•	 Heart Rate (or Pulse Rate), expressed as 
number of beats per minute
•	 HRV-SDNN, calculated from previously 
extracted IBI data.

2. Data and Methods
2.1 Data set description

2.2  Exclusion and inclusion criteria.

Inclusion criteria
•	 Open enrollment: Any individual from the ge-
neral population, irrespective of age, sex, or skin 
phototype, was eligible to take part.
•	 Willingness to participate: Participants had 
to declare their willingness to join the study and 
follow basic instructions (e.g., remain seated and 
face the camera during brief recordings).
•	 Informed consent: Participants were required to 
read the study information and sign written infor-
med consent prior to any procedures (for minors, 
parent/guardian consent with participant assent, 
where applicable).

Exclusion criteria 
•	 Lack of informed consent for the measurement 
procedure.
•	 Significant facial anatomical deformity, e.g., 
due to neoplastic lesions, trauma, or other struc-
tural pathologies that may interfere with signal 
acquisition
•	 Inability to maintain stable head positioning 
during the measurement
•	 Respiratory dysfunction, such as dyspnea, irre-
gular breathing patterns, or shallow respiration, 
which may compromise measurement quality or 

participant safety
•	 Presence of an implanted cardiac pacemaker, 
due to potential interference with the measure-
ment process and associated safety concerns
•	 Requirement for continuous medical supervi-
sion, such as in cases of severe chronic illness 
requiring constant clinical oversight.
•	 Acute life- or health-threatening conditions, 
including but not limited to acute coronary syn-
dromes, respiratory failure, shock, or major trauma
•	 Extensive pathological processes affecting the 
face, which could impair signal detection or intro-
duce significant measurement artifacts
•	 Large facial dressings or bandages that obstruct 
facial features or interfere with optical or visual 
signal acquisition
•	 Extensive facial tattoos or permanent facial ma-
keup, which may affect the accuracy of optical me-
asurement methods
•	 Marked or persistent facial pallor, or cardio-
vascular/respiratory disorders such as heart fa-
ilure, left ventricular systolic dysfunction, aortic 
valve stenosis, or other structural or functional 
abnormalities of the heart or respiratory system 
that may result in low stroke volume, low blood 
pressure amplitude, or the presence of pulsus pa-
radoxus.



2.2 Subject Demographics and Characteristics of the study population

The analytic sample comprised N = 5,311 par-
ticipants (64.7% women, n = 3,436; 35.3% men, n = 
1,875). The mean age was 53.8 ± 18.4 years (median 
57.0; interquartile range [IQR] 31.0; range 10–99). 
Mean body weight was 72.7 ± 14.9 kg (median 70.0; 
IQR 20.0; range 30–140), and mean height was 166.5 
± 9.5 cm (median 166.0; IQR 13.0; range 125–200). 
The resulting BMI averaged 26.2 ± 4.8 kg/m² (median 
25.6; IQR 6.3; range 14–49). Values are reported as 
mean ± SD unless otherwise specified.

Fitzpatrick classification was available for 
5,306/5,311 participants (99.9%). The distribution 
was highly skewed toward mid-range phototypes: 
Type IV was most common (3,068; 57.8%), followed 
by Type III (1,465; 27.6%). Darker phototypes acco-
unted for 14.4% of the cohort (Type V: 593; 11.2% 
and Type VI: 169; 3.2%). Types I and II were inciden-
tal, with only 7 (0.1%) and 4 (0.1%) participants, re-
spectively.
Within-type sex composition showed a female pre-
dominance across most categories (female share 
within type: I 71%, II 100%, III 75%, IV 62%, V 57%), 
while Type VI was the only group with a male majo-
rity (47% female / 53% male).
Age distributions by phototype (medians from the 
boxplots) indicated that participants with Types V 
and VI tended to be younger than those with Types 
III–IV: median age was: I 46.0 years, II 41.5 years, III 
62.0 years, IV 57.0 years, V 46.0 years, VI 50.0 years. 
Thus, compared with the two dominant groups (III–
IV), the darker-skin groups (V–VI) were under-repre-
sented but skewed toward lower median age.
In sum, the cohort is overwhelmingly Type IV and 
III (85.4%), with Types I–II rare and Types V–VI pre-
sent but less frequent and younger on average. This 
distribution should be considered when interpreting 
modality-specific performance across skin tones and 
age strata.
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Figure 4. Height distribution of the study population
Figure 5. Body mass index (BMI) distribution of the study population
Figure 6. Distribution of skin tones by Fitzpatrick phototype in the study population.





2.4 Signal Acquisition and Preprocessing

The PPG-based dataset was collected using a pulse 
oximeter that continuously measured blood-volume 
changes, paired with synchronized video recording. 
Using a heuristic peak-detection algorithm, we can 
count pulsations in real time, enabling precise es-

A signal-quality–dependent modality selection 
(“best-of”) strategy was implemented, which cho-
oses the prediction based on quality metrics. The 
rPPG signal is obtained directly from facial pulsa-
tions: video frames captured by the camera are first 
processed for facial-texture detection, after which 
a dedicated neural network reconstructs the pulse-
-wave signal. Similarly, rBCG also reconstructs the 
pulse wave, but it relies on facial micro-movement 

timation of metrics such as BPM (beat per minute)  
and SDNN. An example PPG waveform with detected 
peaks is shown in Figure 7.

information and a separate neural network.
For both modalities, quality metrics were developed 
to indicate whether the confidence level of the pre-
dicted signal is sufficient to return a result and which 
modality should be selected for the final estimate. 
The quality-assessment procedure is deterministic 
and based on well-established digital signal proces-
sing methods: pulse-wave amplitudes and their va-
riability are evaluated to determine the confidence 

2.5 Signal-Quality–Driven Modality Selection (Best-of) Strategy



of each peak, enabling assignment of a percentage 
quality score to every single beat in the inferred pul-
se wave. In this study, depending on the values of 
the quality metrics, the entire rPPG or rBCG signal is 
discarded; only the modality that meets the quality 
criterion is used for the final estimate (without com-
bining/fusing results).
In summary, the rPPG/rBCG approach based on au-
tomatic modality switching enables extraction of a 
reliable pulse-wave signal from facial recordings 
under varied environmental conditions, because the 
system dynamically selects the highest-quality mo-
dality according to precisely defined metrics.

Figure 8A and Figure 8B present two error surfa-
ces—one for rPPG and one for rBCG—mapped over 
their respective quality metrics. Both surfaces exhi-
bit the expected monotonic trend: as a modality’s 
quality increases, its mean SDNN or HR error decre-
ases. The two surfaces are strongly correlated and 
intersect along a ridge that acts as a data-driven 
decision boundary: on one side, rBCG is predicted 
to yield the lower SDNN or HR error; on the other, 
rPPG is favored. This boundary operationalizes the 
“best-of” selection logic by directing the algorithm 

to choose the modality with the lower expected error 
for the final estimate. Operationally, the quality pla-
ne can be divided into four regimes: (i) High rPPG / 
low rBCG quality → rPPG dominates; (ii) High rBCG 
/ low rPPG quality → rBCG dominates; (iii) Both high 
→ both modalities achieve low error and the boun-
dary passes near the line of equality, so either choice 
performs well; and (iv) Both low → both errors are 
high, suggesting that no-return or re-measurement 
criteria may be appropriate. In the complementary 
“difference-surface” view, the surface lies at approxi-
mately 45° to the quality axes, indicating that—after 
normalization—the two quality measures contribute 
comparably to error discrimination; a simple linear 
decision rule (e.g., a weighted difference of normali-
zed qualities) is therefore well-justified. These plots 
provide construct validity for the selection strategy: 
(a) the consistent inverse relationship between qu-
ality and error supports the use of deterministic, si-
gnal-processing–based quality metrics; (b) the clear 
intersection ridge yields a stable, interpretable deci-
sion boundary rather than an ad-hoc threshold; and 
(c) the geometry of the difference surface explains 
why the “best-of” selector improves aggregate SDNN 
and HR accuracy 

Figure 8A. shows the relationship between the rBCG 
and rPPG quality metrics and their mean SDNN er-
rors. The two error surfaces are clearly correlated 
and intersect along a curve that serves as a decision 

boundary: on one side the rBCG modality is expected 
to yield the lower SDNN error, and on the other side 
rPPG; the algorithm selects the corresponding mo-
dality for the final estimate. 



Figure 8B. shows the relationship between the rBCG 
and rPPG quality metrics and their mean HR errors. 
The two error surfaces are clearly correlated and in-
tersect along a curve that serves as a decision boun-
dary: on one side the rBCG modality is expected to 
yield the lower HR  error, and on the other side rPPG; 
the algorithm selects the corresponding modality for 
the final estimate. 

Figure 9A and Figure 9B show an equivalent repre-
sentation in which a single surface maps the diffe-
rence in errors between the two modalities onto the 
quality plane (QrPPG,QrBCG), e.g. , ErPPG−ErBCGE

•	 The sign is immediately decision-relevant: ne-
gative values (under this definition) indicate rPPG 
has the lower error; positive values indicate rBCG 
is more accurate. The absolute magnitude |ErPPG−
ErBCG| can be read as a confidence measure: the lar-
ger it is, the clearer the advantage of one modality.
•	 The surface lies at roughly 45° to the quality 
axes. After normalizing the quality metrics, this 
means both quality measures contribute compa-
rably to discriminating which modality yields the 
lower error. Consequently, a simple linear decision 
rule—such as comparing normalized qualities or 
using a weighted difference—is well-justified.

Algorithmically:
•	 The decision boundary (where the error diffe-
rence ≈ 0) runs close to the line of equal quality 
QrPPG≈QrBCGQ​. On one side the selector should cho-
ose rPPG; on the other, rBCG.
•	 When both qualities are high, the difference in 

errors is typically small (both methods perform 
well), so the choice is low-risk.
•	 When both qualities are low, both errors tend to 
be high and the difference may be unstable; this is 
a natural region for no-return / re-measurement 
policies.
•	 In practice, introducing a small margin δ  around 
the boundary (i.e., abstain when ∣ErPPG−ErBCG∣<δ| re-
duces misclassifications in the uncertainty zone.

Practical implications.
(1) A simple linear selector is adequate because 
the two quality metrics are similarly informative.
(2) A confidence score can be derived directly from 
∣ErPPG−ErBCG∣.
(3) Measurement policy (repeat/adjust conditions) 
should trigger when both qualities are low or the 
error difference is small, i.e., near the decision bo-
undary.

Legend:

•	 QrPPG​,QrBCG​ - normalized quality metrics                  
(scale 0–1 or 0–100).
•	 ErPPG, ErBCGE -  SDNN error [ms].
•	 ΔE=ErPPG−ErBCG  error-difference surface;
    ΔE<0 ⇒ rPPG has lower error,
    ΔE>0⇒  rBCG has lower error.
•	 Decision boundary: ΔE=0



Figure 9A presents an equivalent view in which the 
surface represents the difference between the two 
errors; in this representation, the surface lies at ap-
proximately 45° to the quality plane, supporting the 

Figure 9A presents an equivalent view in which the 
surface represents the difference between the two 
errors; in this representation, the surface lies at ap-
proximately 45° to the quality plane, supporting the 
conclusion that the quality measures are informati-

conclusion that the quality measures are informati-
ve indicators of the lower-error modality. This plot is 
shown for the SDNN measure of HRV.

ve indicators of the lower-error modality. This plot is 
shown for the HR.

2.6 Statistical analysis



Figure 10. Heart rate and heart rate variability (SDNN) measured by rPPG: predicted vs. ground truth, colo-
red by confidence; fits for all, low Q, and high Q.

Figure 11A. Heart rate variability (SDNN) measured by rPPG: Error vs. confidence: scatter with linear trend 
and  Error vs. confidence: binned mean with IQR and 20–80% whiskers (with bin counts).

Figure 11B. Heart rate measured by rPPG: Error vs. confidence: scatter with linear trend and  Error vs. con-
fidence: binned mean with IQR and 20–80% whiskers (with bin counts).

3. Results 

3.1 rPPG: Agreement with Ground Truth and Dependence on Quality 
(HR and SDNN)



For heart rate (HR), rPPG predictions showed excel-
lent agreement with the reference, with MAE 0.37 
bpm, RMSE 1.85 bpm, and negligible bias 0.05 bpm; 
the correlation was R = 0.99 (R² = 0.98). For SDNN, 
accuracy was lower but remained clinically useful 
(MAE 5.85 ms, RMSE 13.63 ms, bias 0.32 ms; R = 0.69, 
R² = 0.48). Points colored by the rPPG quality score 
cluster around the identity line at high quality and 
disperse at lower quality. The absolute error demon-
strated a consistent negative correlation with quality 

(Spearman ρ ≈ −0.40 for HR; −0.45 for SDNN). When 
analyses were restricted to high-quality windows 
(e.g., Q≥0.95Q \ge 0.95Q≥0.95), error decreased mar-
kedly (MAE HR: 0.07 bpm vs 0.73 bpm at low Q; MAE 
SDNN: 2.00 ms vs 10.64 ms). Complementary “error 
vs confidence” plots (n = 5,311) showed a monotonic 
decline of the mean error with increasing confiden-
ce and progressive narrowing of dispersion (IQR, 
whiskers), supporting the use of quality thresholds 
or confidence flags in downstream applications.

3.2 rBCG: Agreement with Ground Truth and Dependence on Quality (HR and 
SDNN)

Figure 12. Heart rate and heart rate variability (SDNN) measured by rBPG: predicted vs. ground truth, co-
lored by confidence; fits for all, low Q, and high Q.

Figure 13A.  Heart rate variability (SDNN) measured by rBPG: Error vs. confidence: scatter with linear trend 
and  Error vs. confidence: binned mean with IQR and 20–80% whiskers (with bin counts).



Figure 13B.  Heart rate variability (SDNN) measured by rBPG: Error vs. confidence: scatter with linear trend 
and  Error vs. confidence: binned mean with IQR and 20–80% whiskers (with bin counts).

3.3. Confidence, error, and outcome of the quality-driven selection

Figure 14A.  The distributions of SDNN errors and quality scores for each modality (rPPG and rBCG). Ap-
plying the optimal-selection algorithm improves the final SDNN prediction accuracy by approximately 7%.

Aggregate rBCG accuracy was lower than rPPG, par-
ticularly at low quality. For HR, overall MAE was 3.57 
bpm (RMSE 7.14 bpm, bias 1.11 bpm; R = 0.82, R² = 
0.68). For SDNN, overall MAE was 30.59 ms (RMSE 
44.13 ms, bias 29.95 ms; R = 0.28, R² = 0.08). Never-
theless, rBCG performance improved sharply at high 
quality: MAE HR fell from 8.51 bpm (low Q) to 0.43 
bpm (high Q), and MAE SDNN from 64.41 ms to 6.71 
ms. The error–quality relationship was strongly ne-
gatively correlated (Spearman ρ ≈ −0.77 for HR; −0.80 

for SDNN). The corresponding “error vs confidence” 
plots again showed a near-linear decrease of mean 
error with increasing confidence and reduced disper-
sion at higher QQQ, indicating that quality-gated 
rBCG can yield reliable estimates in a substantial 
fraction of windows despite weaker aggregate per-
formance. These results provide the empirical basis 
for the subsequent best-of (quality-driven) modali-
ty selection, whereby rBCG is preferentially used in 
conditions where its confidence is high.



For SDNN, the confidence distributions differ 
markedly between modalities: rPPG exhibits a high 
central tendency (median around 0.90), where-
as rBCG is centered lower (median around 0.64). 
The SDNN error distributions mirror this pattern: 
rPPG MAE = 6.314 ms, markedly below rBCG MAE = 
35.636 ms. Applying the best-of (quality-driven) se-

For Heart Rate (HR), the confidence distributions 
differ between modalities: rPPG exhibits a higher 
central tendency (median around 0.90), whereas 
rBCG is centered lower (median around 0.64). The 
HR error distributions follow the same pattern: rPPG 
MAE = 0.445 bpm, which is substantially lower than 
rBCG MAE = 3.518 bpm. Applying the best-of (quali-

lector over all windows results in rPPG being chosen 
in 5,119/5,311 cases (96%) and rBCG in 192/5,311 
(4%), yielding a final MAE of 5.876 ms. These sum-
maries indicate that, in aggregate, rPPG attains both 
higher quality and lower SDNN error, while rBCG 
contributes selectively in a minority of cases where 
its quality is sufficient.

ty-driven) selector over all windows results in rPPG 
being chosen in 5,122/5,303 cases (97%) and rBCG in 
181/5,303 cases (3%), yielding a final MAE of 0.432 
bpm. These results indicate that, overall, rPPG achie-
ves both higher quality and lower HR error, while 
rBCG contributes selectively in rare cases where its 
signal quality is comparatively better.

Figure 14B. The distributions of HR errors and quality scores for each modality (rPPG and rBCG). Applying 
the optimal-selection algorithm improves the final HR prediction accuracy by approximately 3%.

3.4. Modality-specific SDNN and HR error by Fitzpatrick phototype (III–VI)



Figure 15A . Modality-specific SDNN error distribu-
tions stratified by Fitzpatrick skin type (III–VI). Two 
findings are evident: (1) rPPG error increases with 
higher Fitzpatrick types (darker skin), whereas rBCG 
error shows little dependence on skin type; (2) con-
sequently, the modality-selection algorithm yields 
larger gains at higher Fitzpatrick types by favoring 
rBCG. At type VI, the improvement is approxima-
tely 18%, compared with an average improvement of 
about 7% across the cohort.

Stratification by skin phototype shows a monotonic 
increase of rPPG error with darker phototypes, whi-

le rBCG error remains relatively flat. Reported MAE 
(ms) by type:

•	 Type III: rPPG 3.0, rBCG 31.5
•	 Type IV: rPPG 6.0, rBCG 36.0
•	 Type V: rPPG 13.3, rBCG 42.6
•	 Type VI: rPPG 17.7, rBCG 40.4

These data confirm pigmentation-related degra-
dation for rPPG and relative invariance for rBCG, 
supporting the rationale for modality selection con-
ditioned on quality

Figure 15B. Modality-specific HR error distributions 
stratified by Fitzpatrick skin type (III–VI). Two fin-
dings are evident: (1) rPPG error increases monoto-
nically with darker skin tones, whereas rBCG error 
remains comparatively stable across skin types; (2) 
as a consequence, the modality-selection algorithm 
is expected to yield larger benefits in darker skin to-
nes by favoring rBCG whenever its quality surpasses 
rPPG.
Stratification by skin phototype shows this clear 
trend, with mean absolute error (MAE, bpm) by type:

•	 Type III: rPPG = 0.165, rBCG = 2.782
•	 Type IV: rPPG = 0.384, rBCG = 3.566
•	 Type V: rPPG = 1.173, rBCG = 4.665
•	 Type VI: rPPG = 1.279, rBCG = 4.764

These data confirm pigmentation-related degrada-
tion for rPPG in HR estimation, while rBCG remains 
relatively invariant across skin types. This pattern 
supports the rationale for applying quality-conditio-
ned multimodal fusion to maintain accuracy in di-
verse populations.

Figure 16A. Selected modality and resulting SDNN error by Fitzpatrick phototype



Across phototypes III–VI, the selection mechanism 
chooses rPPG in the majority of windows, with the 
share of rBCG selections increasing at higher photo-
types. The final SDNN error (MAE, ms) after selection 
rises with phototype: 2.9 (III), 5.7 (IV), 11.6 (V), 14.5 

Across phototypes III–VI, the selection mechanism 
chooses rPPG in the vast majority of windows, with 
the share of rBCG selections gradually increasing at 
higher phototypes. The final HR error (MAE, bpm) 
after selection also rises with phototype: 0.162 (III), 

(VI). Thus, although overall performance declines 
with darker skin (driven by rPPG sensitivity), qu-
ality-gated selection maintains practical accuracy 
and limits error growth by deferring to rBCG where 
appropriate.

Figure 16B. Selected modality and resulting HR error by Fitzpatrick phototype

Figure 17. Proportion of windows with lower error by modality (by phototype)

0.375 (IV), 1.100 (V), 1.209 (VI). Thus, although ove-
rall performance declines slightly with darker skin 
(driven mainly by rPPG sensitivity), quality-gated 
selection maintains practical accuracy and limits er-
ror growth by deferring to rBCG where appropriate.



Within each phototype, the proportion of windows 
where rPPG attains lower error than rBCG is: 89% 
(III), 83% (IV), 81% (V), 73% (VI); conversely, rBCG is 
better in 11%, 17%, 19%, and 27%, respectively. The 

increasing share of rBCG wins with higher phototype 
quantifies the modality shift implied by the quality 
metrics and supports the best-of strategy as photo-
type increases.

4. Discussion 
This work extends the evidence base for camera‑ba-
sed cardiophysiology by formalizing a signal‑quali-
ty–driven selection mechanism between rPPG and 
rBCG and by analyzing its behavior on the joint quali-
ty plane. The near‑identity agreement of rPPG with 
the reference for heart rate (HR) and the moderate 
agreement for SDNN replicate the well‑described 
pattern in which optical methods recover rate with 
higher fidelity than variability, the latter being in-
trinsically more sensitive to timing jitter and windo-
wing. rBCG, while weaker on average, offers comple-
mentary robustness when optical quality degrades, 
reflecting its reliance on mechanical micro‑motion 
rather than chromatic changes. Two measurement 
factors help explain this pattern. First, timing jitter—
small random perturbations in beat timing arising 
from motion, frame‑rate quantization, and peak‑de-
tection error—adds variance to inter‑beat intervals 
and disproportionately inflates HRV error relative to 
HR. Second, windowing—estimating metrics in finite 
60‑s segments—introduces dependence on window 
length and placement; short windows increase esti-
mator variance and edge effects, whereas longer win-
dows improve stability at the cost of responsiveness.
The decision‑surface analyses provide a mechanistic 
account of why the selection strategy succeeds. After 
normalization, the rPPG and rBCG quality metrics 
contribute comparably to error discrimination, and 
the intersection ridge between the two error surfa-
ces yields an explicit, stable decision boundary. This 
geometry supports simple linear rules for selection 
and motivates explicit abstention policies in regions 
where both qualities are low. In decision‑theoretic 
terms, the selector approximates a risk‑sensitive 
policy that minimizes expected error subject to a 
constraint on returning results only when quality 
exceeds a task‑specific threshold. In aggregate, the 
“best‑of” strategy improves SDNN accuracy by ap-
proximately 7%, with larger gains when one moda-
lity’s quality systematically degrades—for example, 
at higher Fitzpatrick phototypes where rPPG quality 
drops and the boundary shifts to favor rBCG (≈18% 
improvement at type VI). Practical control of the 
operating point is possible by tuning the boundary 
(or adding a small margin, δ) to trade coverage aga-
inst accuracy in low‑quality regions.
Subgroup analyses across Fitzpatrick phototypes de-
monstrate that rPPG error increases with higher pig-
mentation, whereas rBCG shows limited dependence 
on phototype. The quality‑aware selector therefore 
reallocates weight toward rBCG as phototype incre-

ases, mitigating a well‑documented equity concern 
of optical sensing. Importantly, the residual increase 
in error at the highest phototypes indicates that se-
lection alone does not fully close the gap, pointing 
to opportunities for improved signal modeling, illu-
mination control, sensor/ISP tuning, and diversifica-
tion of training data.
In addition to the SDNN-focused analyses, the pre-
sent results for Heart Rate (HR) warrant explicit di-
scussion. HR estimation by rPPG demonstrated near-
-identity agreement with the reference, with overall 
MAE well below 0.5 bpm and correlation above 0.98. 
In contrast, rBCG alone yielded higher aggregate er-
ror (MAE ≈ 3.5 bpm), yet its performance improved 
markedly when quality was high. Importantly, the 
quality-driven selection mechanism reduced the fi-
nal HR error to 0.43 bpm, confirming that the same 
selection logic effective for SDNN also benefits HR, 
albeit with smaller absolute gains (~3% improve-
ment).
Subgroup analyses by Fitzpatrick phototype further 
revealed that rPPG HR error rises slightly with incre-
asing pigmentation, from 0.16 bpm (Type III) to 1.28 
bpm (Type VI). rBCG error remained more stable 
across phototypes but consistently higher (≈2.8–4.8 
bpm). The best-of selection therefore continued to 
favor rPPG in the vast majority of windows (>95%), 
but with a growing share of rBCG contributions at 
darker skin tones. This adaptive reallocation limi-
ted the increase in final HR error across phototypes, 
which remained below 1.3 bpm even at Type VI.
These HR-specific findings extend the general conc-
lusion that rPPG provides superior accuracy under 
favorable conditions, while rBCG contributes selec-
tively when rPPG quality degrades. They also highli-
ght that quality-gated selection mitigates, though 
does not entirely eliminate, the performance gap at 
higher phototypes. Together with the SDNN results, 
these observations strengthen the rationale for mul-
timodal, quality-aware cardiophysiological monito-
ring.

Operationally, coupling each estimate with its qu-
ality enables several practical controls aligned with 
clinical expectations: quality thresholds to con-
strain error; dynamic re‑record prompts when both 
qualities are low; and user‑facing confidence labels 
to support interpretation. Calibrating the mapping 
from quality to expected error—e.g., via isotonic or 
Platt‑style calibration on held‑out data—would al-
low quality to be treated as a probabilistic reliabili-



ty score, improving transparency for end users and 
enabling scenario‑specific operating points (e.g., 
high‑sensitivity versus high‑specificity settings). 
Reporting a per‑window quality‑derived confidence 
alongside SDNN and heart rate provides transparent, 
actionable uncertainty estimates.
Methodologically, selection and fusion should be 
viewed as complementary. The present results show 
that selection alone yields measurable gains; howe-
ver, in regions where both modalities have interme-
diate quality, weighted fusion (with weights derived 
from calibrated quality) may reduce variance relati-
ve to either modality alone. A hierarchical policy—
abstain when both qualities are poor; select when 

This evaluation was conducted under controlled, se-
ated conditions with uniform frontal illumination 
and short (≈60‑s) recordings. Performance in uncon-
strained environments—variable lighting, head pose 
changes, background motion, and hand‑held captu-
re—was not directly assessed. Consequently, error 
rates reported here likely underestimate worst‑case 
performance in the wild, and additional validation is 
required to quantify robustness under everyday use.
Ground truth was derived exclusively from trans-
missive pulse oximetry; heart rate and inter‑beat 
intervals were computed from the photoplethysmo-
graphic waveform with synchronized timestamps. 
The absence of an ECG reference precludes characte-
rization of timing offsets relative to electrical R‑pe-
aks and limits assessment of arrhythmias or ectopy. 
Although pulse oximetry is an accepted reference for 
HR and IBI at rest, latency and morphology differen-
ces (e.g., variability in pulse transit time) may intro-
duce small systematic biases. A prospective study 
including a harmonized multi‑lead ECG and unified 
synchronization would reduce this source of error 
and more fully characterize timing performance.
The demographic composition was skewed toward 
Fitzpatrick phototypes III–IV, with incidental repre-
sentation of I–II and more limited representation of 
V–VI. As a result, precision of subgroup estimates is 
lower for the rarest categories; the residual elevation 
of error in darker phototypes should therefore be in-

one clearly dominates; fuse when both are modera-
te—offers a principled roadmap for future iterations 
without sacrificing interpretability.
Finally, robust deployment will depend on genera-
lization beyond the controlled setting used here. 
Cross‑device and cross‑environment calibration, 
sensitivity to image signal‑processing pipelines, and 
temporal stability across repeated measures warrant 
systematic study. Extending validation to additional 
HRV endpoints (e.g., RMSSD, frequency‑domain me-
trics) and to clinical cohorts characterized by arrhy-
thmia or low perfusion will clarify the scope of safe 
use and the residual failure modes of camera‑based 
cardiophysiology.

4.1 Limitations of the Study

5. Conclusions 

terpreted with appropriate uncertainty.
Exclusion criteria removed clinically important gro-
ups (e.g., significant anemia, heart failure, marked re-
spiratory compromise, pacemaker carriers), limiting 
generalizability to high‑risk populations. Further-
more, participants were recorded at rest; the effect 
of exercise, talking, or facial expressions—common 
in telehealth—was not examined.
Only SDNN was analyzed as the HRV endpoint. Other 
time‑domain (e.g., RMSSD, pNN50) and frequency-
‑domain measures (e.g., LF/HF) may respond diffe-
rently to camera‑based sensing and to the selection 
policy. We did not evaluate beat‑to‑beat timing er-
rors relative to ECG fiducials, nor did we assess ar-
rhythmia detection.
All data were collected with a single smartphone/
lighting configuration. Cross‑device and cross‑ISP 
(image signal processing) robustness, frame‑rate 
sensitivity, compression effects, and generalization 
to different camera geometries were not systemati-
cally studied.
Finally, statistical analyses focused on point esti-
mates (MAE/RMSE) without full uncertainty quan-
tification at the subject level. Test–retest reliability, 
day‑to‑day within‑subject variability, and potential 
confounders (caffeine, recent exercise, medications) 
were not captured, precluding stability analyses over 
time.

A quality-driven “best-of” selection between rPPG 
and rBCG enables reliable camera-based estimation 
of HR and SDNN from ≈60 s recordings with pulse-
-oximetry ground truth (shorter measurement times 
of 30s and 45s are also possible). rPPG provides ne-
ar-identity HR and accurate SDNN at high confiden-
ce, while rBCG contributes when optical quality de-
grades. Quality scores are consistently negatively 
correlated with error, and the intersection of the 

modality-specific error surfaces on the joint quality 
plane yields a stable, interpretable decision bounda-
ry that justifies simple selection. At the population 
level, the policy improves SDNN by ~7% overall and 
~18% at Fitzpatrick VI, mitigating skin-tone–related 
disparities while preserving rPPG’s HR accuracy un-
der favorable conditions. In practice, systems sho-
uld pair each output with a quality score, abstain or 
prompt a brief re-recording when quality is low, and 



6.1 Take home message

6. Summary
Remote photoplethysmography (rPPG) and ballisto-
cardiography (rBCG) enable contactless monitoring 
of cardiovascular function but each modality has 
inherent limitations. rPPG offers high accuracy for 
heart rate (HR) but is sensitive to lighting and skin 
pigmentation, while rBCG is less affected by these 
factors yet noisier overall. Shen.AI developed a mul-
timodal, quality-driven selection algorithm that dy-
namically chooses the modality with the higher con-
fidence score to optimize performance.
In a cohort of 5,311 participants (mean age 53.8 
years, 64.7% female), simultaneous rPPG, rBCG, and 
pulse oximetry reference recordings were analyzed. 
rPPG achieved near-identity agreement for HR (MAE 

This study demonstrates that remote photoplethy-
smography (rPPG) provides highly accurate heart 
rate estimation, while remote ballistocardiography 
(rBCG) offers complementary robustness when rPPG 
quality degrades, particularly in darker skin tones. 
By leveraging quality metrics, Shen.AI’s multimo-
dal “best-of” selection algorithm dynamically cho-
oses the most reliable modality, reducing errors 

≈ 0.37 bpm, R = 0.99), while rBCG showed higher er-
ror (MAE ≈ 3.6 bpm) but improved substantially un-
der high-quality conditions. For HRV (SDNN), rPPG 
again outperformed rBCG (MAE ≈ 6 ms vs 36 ms). 
Applying the best-of selector reduced errors by ~3% 
for HR and ~7% for SDNN. Stratification by Fitzpa-
trick skin type confirmed rising rPPG error with dar-
ker phototypes, while rBCG remained stable; selec-
tion mitigated disparities, with SDNN improvement 
reaching ~18% at type VI.
This multimodal strategy ensures robust and equita-
ble contactless monitoring of HR and HRV across di-
verse populations.

by ~3% for HR and ~7% for HRV (SDNN). In darker 
phototypes, improvements were even larger (≈18% 
for SDNN). These results confirm that multimodal, 
quality-aware cardiophysiology can deliver reliable 
and equitable contactless monitoring across diverse 
populations, supporting broader telemedicine and 
preventive healthcare applications.

tune a small margin (δ) around the decision boun-
dary to balance accuracy and coverage; future work 
should calibrate quality-to-error mappings, evaluate 

selection-plus-fusion policies, and extend validation 
across devices, environments, and HRV endpoints.


