Authors: Przemystaw Jaworski, Szymon Sobczak, Anna Drohomirecka, Tymoteusz Okupnik
Research Report: Multimodal Approach by Shen.AI Using Remote Photoplethysmography (rPPG) and
Ballistocardiography (rBCG) for Heart Rate and Heart Rate Variability Prediction

Research Report:
Multimodal Approach by Shen.Al Using Remote
Photoplethysmography (rPPG) and Ballistocardiography
(rBCG) for Heart Rate and Heart Rate Variability Prediction

Abstract

Remote photoplethysmography (rPPG) and remo-
te ballistocardiography (rBCG) are promising tech-
niques for contactless cardiovascular monitoring.
Both modalities can estimate heart rate (HR) and
heart rate variability (HRV), but each has specific li-
mitations: rPPG is sensitive to lighting and skin pig-
mentation, whereas rBCG is less affected by these
factors but generally noisier. Shen.Al has developed
a multimodal, signal-quality—driven approach that
dynamically selects or combines modalities based on
confidence metrics to optimize performance.

We evaluated this strategy in a large cohort of 5,311
participants spanning a broad demographic spec-
trum (mean age 53.8 years, 64.7% female). Data
acquisition involved simultaneous recording of fa-
cial video (rPPG), micro-movement signals (rBCG),
and pulse oximetry (ground truth). Each 60-second
recording was segmented, and HR and HRV (SDNN)
were computed for each modality. Quality scores
were assigned to every window, enabling the best-of
algorithm to select the modality with higher expec-
ted accuracy.

Results showed that rPPG achieved near-identity
agreement with the reference for HR (MAE = 0.37

1. Introduction

Remote monitoring methods such as photoplethy-
smography (rPPG) and ballistocardiography (rBCG)
are gaining popularity in telemedicine and consumer
health applications. Their potential to assess heart
rate (HR) and heart rate variability (HRV)—impor-
tant indicators of autonomic nervous system activity
and overall health—is particularly promising.

In this study, we investigate a multimodal approach
developed by Shen.Al, which combines rPPG and
rBCG signals to predict HR and HRV. The system dy-
namically evaluates the quality of each signal moda-
lity using dedicated quality metrics and selects the
optimal input for final prediction. This signal-aware
selection strategy aims to maximize accuracy in he-
terogeneous real-world conditions, such as varying
lighting, motion, and diverse skin tones.

HR and HRV are clinically significant parameters

bpm, R = 0.99), while rBCG exhibited higher error
overall (MAE = 3.6 bpm, R = 0.82) but markedly im-
proved in high-quality windows. For SDNN, rPPG
again outperformed rBCG (MAE = 6 ms vs 36 ms),
though variability estimates were inherently more
error-prone than HR. Applying the best-of strategy
yielded measurable gains: HR error was reduced by
~3% and SDNN by ~7% overall. Stratification by Fitz-
patrick skin type highlighted equity-relevant pat-
terns: rPPG error increased progressively with darker
phototypes (III-VI), whereas rBCG remained stable.
The selector accordingly shifted weight toward rBCG
in these subgroups, mitigating disparities. At photo-
type VI, SDNN accuracy improved by ~18%, while HR
error remained below 1.3 bpm.

These findings demonstrate that multimodal, quali-
ty-gated selection effectively leverages the comple-
mentary strengths of rPPG and rBCG, ensuring ro-
bust and equitable contactless measurement of HR
and HRV across a large, diverse population. Future
work should extend validation to additional HRV en-
dpoints (e.g., RMSSD, frequency-domain measures),
unconstrained real-world settings, and clinical co-
horts with arrhythmias or impaired perfusion.

used in a wide range of applications, including car-
diovascular risk monitoring, mental stress and fati-
gue assessment, sleep quality evaluation, and early
detection of arrhythmias. HRV in particular is a non-
-invasive biomarker of autonomic nervous system
regulation and is associated with overall health, re-
silience to stress, and mortality risk. Continuous and
reliable remote estimation of these metrics opens
new opportunities for preventive care, chronic dise-
ase management, and digital therapeutics.

The objective of this study is to evaluate the effecti-
veness of the Shen.Al multimodal system for estima-
tion of HR and HRV against the ground truth results
obtained from pulsoxymetry measurements, across
different subject demographics.



2. Data and Methods
2.1 Data set description

The data acquisition process in this study involved a
custom data collection protocol, for which the team
obtained approvals from the Bioethics Committee of
the Medical University of Wroctaw and the Lower Si-
lesia Chamber of Physicians.

Recording of participants’ facial videos and the col-
lection of pulse oximetry-based reference measure-
ments under controlled conditions were performed
simultaneously. Recordings were conducted in three
one-minute measurement sessions. A smartphone
with a camera was mounted on a stable tripod equip-
ped with an LED lamp, providing uniform and direct
facial illumination while avoiding light reflections.
Participants were seated with their feet flat on the
floor and their forearm supported on a table or thigh,
maintaining their face centrally aligned in the came-
ra frame and positioned perpendicularly to the lens.
During recording, participants remained motionless,
refrained from facial expressions or speaking, and
ensured that the skin of the face was fully exposed.
Throughout the measurements, signals from a Blu-
etooth-connected pulse oximeter (Berry BM1000C)
were recorded simultaneously with video to confirm
heart rate values and interbeat intervals. The in-
tervals were calculated as a time difference between
consecutive peaks in photoplethysmographic signal.

2.2 Exclusion and inclusion criteria.

Inclusion criteria
* Open enrollment: Any individual from the ge-
neral population, irrespective of age, sex, or skin
phototype, was eligible to take part.
» Willingness to participate: Participants had
to declare their willingness to join the study and
follow basic instructions (e.g., remain seated and
face the camera during brief recordings).
» Informed consent: Participants were required to
read the study information and sign written infor-
med consent prior to any procedures (for minors,
parent/guardian consent with participant assent,
where applicable).

Exclusion criteria

» Lack of informed consent for the measurement
procedure.

 Significant facial anatomical deformity, e.g.,
due to neoplastic lesions, trauma, or other struc-
tural pathologies that may interfere with signal
acquisition

» Inability to maintain stable head positioning
during the measurement

» Respiratory dysfunction, such as dyspnea, irre-
gular breathing patterns, or shallow respiration,
which may compromise measurement quality or

Participant metadata were collected, including
age, sex, height, weight, Fitzpatrick scale of the
skin tone and information regarding hyperten-
sion, diabetes, smoking, arrhythmia, or anemia.
3 types of information were extracted separately
from both PPG and rBCG signals, during a 60-se-
conds continuous measurement:

 Inter-beat (IBI) intervals, expressed in mil-

liseconds

» Heart Rate (or Pulse Rate), expressed as

number of beats per minute

« HRV-SDNN, calculated from previously

extracted IBI data.

participant safety

» Presence of an implanted cardiac pacemaker,
due to potential interference with the measure-
ment process and associated safety concerns

» Requirement for continuous medical supervi-
sion, such as in cases of severe chronic illness
requiring constant clinical oversight.

» Acute life- or health-threatening conditions,
including but not limited to acute coronary syn-
dromes, respiratory failure, shock, or major trauma
» Extensive pathological processes affecting the
face, which could impair signal detection or intro-
duce significant measurement artifacts

» Large facial dressings or bandages that obstruct
facial features or interfere with optical or visual
signal acquisition

» Extensive facial tattoos or permanent facial ma-
keup, which may affect the accuracy of optical me-
asurement methods

» Marked or persistent facial pallor, or cardio-
vascular/respiratory disorders such as heart fa-
ilure, left ventricular systolic dysfunction, aortic
valve stenosis, or other structural or functional
abnormalities of the heart or respiratory system
that may result in low stroke volume, low blood
pressure amplitude, or the presence of pulsus pa-
radoxus.



2.2 Subject Demographics and Characteristics of the study population

The analytic sample comprised N = 5,311 par-
ticipants (64.7% women, n = 3,436; 35.3% men, n =
1,875). The mean age was 53.8 £ 18.4 years (median
57.0; interquartile range [IQR] 31.0; range 10-99).
Mean body weight was 72.7 # 14.9 kg (median 70.0;
IQR 20.0; range 30-140), and mean height was 166.5
* 9.5 cm (median 166.0; IQR 13.0; range 125-200).
The resulting BMI averaged 26.2 + 4.8 kg/m? (median
25.6; IQR 6.3; range 14-49). Values are reported as
mean * SD unless otherwise specified.

Fitzpatrick classification was available for
5,306/5,311 participants (99.9%). The distribution
was highly skewed toward mid-range phototypes:
Type IV was most common (3,068; 57.8%), followed
by Type III (1,465; 27.6%). Darker phototypes acco-
unted for 14.4% of the cohort (Type V: 593; 11.2%
and Type VI: 169; 3.2%). Types I and Il were inciden-
tal, with only 7 (0.1%) and 4 (0.1%) participants, re-
spectively.

Within-type sex composition showed a female pre-
dominance across most categories (female share
within type: 1 71%, 11 100%, 111 75%, IV 62%,V 57%),
while Type VI was the only group with a male majo-
rity (47% female / 53% male).

Age distributions by phototype (medians from the
boxplots) indicated that participants with Types V
and VI tended to be younger than those with Types
[IT-1V: median age was: 1 46.0 years, I1 41.5 years, III
62.0 years, IV 57.0 years, V 46.0 years, VI 50.0 years.
Thus, compared with the two dominant groups (I11-
IV), the darker-skin groups (V-VI) were under-repre-
sented but skewed toward lower median age.

In sum, the cohort is overwhelmingly Type IV and
II1 (85.4%), with Types I-II rare and Types V-VI pre-
sent but less frequent and younger on average. This
distribution should be considered when interpreting
modality-specific performance across skin tones and
age strata.

The analytic sample comprised N = 5,311 partici-
pants (64.7% women, n = 3,436; 35.3% men, n =
1,875). The mean age was 53.8 * 18.4 years (median
57.0; interquartile range [IQR] 31.0; range 10-99).
Mean body weight was 72.7 + 14.9 kg (median 70.0;
IQR 20.0; range 30-140), and mean height was 166.5
+ 9.5 cm (median 166.0; IQR 13.0; range 125-200).
The resulting BMI averaged 26.2 * 4.8 kg/m? (median
25.6; IOR 6.3; range 14-49). Values are reported as
mean *+ SD unless otherwise specified.

Fitzpatrick classification was available for
5,306/5,311 participants (99.9%). The distribution
was highly skewed toward mid-range phototypes:
Type IV was most common (3,068; 57.8%), followed
by Type III (1,465; 27.6%). Darker phototypes acco-
unted for 14.4% of the cohort (Type V: 593; 11.2%
and Type VI: 169; 3.2%). Types I and Il were inciden-
tal, with only 7 (0.1%) and 4 (0.1%) participants, re-
spectively.

Within-type sex composition showed a female pre-
dominance across most categories (female share
within type: 1 71%, 11 100%, 111 75%, IV 62%, V 57%),
while Type VI was the only group with a male majo-
rity (47% female / 53% male).

Age distributions by phototype (medians from the
boxplots) indicated that participants with Types V
and VI tended to be younger than those with Types
[II-1V: median age was: [ 46.0 years, I1 41.5 years, III
62.0 years, IV 57.0 years, V 46.0 years, VI 50.0 years.
Thus, compared with the two dominant groups (IT1I-
V), the darker-skin groups (V-VI) were under-repre-
sented but skewed toward lower median age.

In sum, the cohort is overwhelmingly Type IV and
I11 (85.4%), with Types I-II rare and Types V-VI pre-
sent but less frequent and younger on average. This
distribution should be considered when interpreting
modality-specific performance across skin tones and
age strata.

Figure 1. Age distribution of the study population

Figure 2. Gender distribution of the study population

Figure 3. Weight distribution of the study population

Figure 4. Height distribution of the study population

Figure 5. Body mass index (BMI) distribution of the study population

Figure 6. Distribution of skin tones by Fitzpatrick phototype in the study population.
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2.4 Signal Acquisition and Preprocessing

The PPG-based dataset was collected using a pulse
oximeter that continuously measured blood-volume
changes, paired with synchronized video recording.
Using a heuristic peak-detection algorithm, we can
count pulsations in real time, enabling precise es-

timation of metrics such as BPM (beat per minute)
and SDNN. An example PPG waveform with detected
peaks is shown in Figure 7.

2.5 Signal-Quality-Driven Modality Selection (Best-of) Strategy

A signal-quality—-dependent modality selection
(“best-of”) strategy was implemented, which cho-
oses the prediction based on quality metrics. The
rPPG signal is obtained directly from facial pulsa-
tions: video frames captured by the camera are first
processed for facial-texture detection, after which
a dedicated neural network reconstructs the pulse-
-wave signal. Similarly, rBCG also reconstructs the
pulse wave, but it relies on facial micro-movement

information and a separate neural network.

For both modalities, quality metrics were developed
to indicate whether the confidence level of the pre-
dicted signal is sufficient to return a result and which
modality should be selected for the final estimate.
The quality-assessment procedure is deterministic
and based on well-established digital signal proces-
sing methods: pulse-wave amplitudes and their va-
riability are evaluated to determine the confidence



of each peak, enabling assignment of a percentage
quality score to every single beat in the inferred pul-
se wave. In this study, depending on the values of
the quality metrics, the entire rPPG or rBCG signal is
discarded; only the modality that meets the quality
criterion is used for the final estimate (without com-
bining/fusing results).

In summary, the rPPG/rBCG approach based on au-
tomatic modality switching enables extraction of a
reliable pulse-wave signal from facial recordings
under varied environmental conditions, because the
system dynamically selects the highest-quality mo-
dality according to precisely defined metrics.

Figure 8A and Figure 8B present two error surfa-
ces—one for rPPG and one for rBCG—mapped over
their respective quality metrics. Both surfaces exhi-
bit the expected monotonic trend: as a modality’s
quality increases, its mean SDNN or HR error decre-
ases. The two surfaces are strongly correlated and
intersect along a ridge that acts as a data-driven
decision boundary: on one side, rBCG is predicted
to yield the lower SDNN or HR error; on the other,
rPPG is favored. This boundary operationalizes the
“best-of” selection logic by directing the algorithm
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Figure 8A. shows the relationship between the rBCG
and rPPG quality metrics and their mean SDNN er-
rors. The two error surfaces are clearly correlated
and intersect along a curve that serves as a decision

to choose the modality with the lower expected error
for the final estimate. Operationally, the quality pla-
ne can be divided into four regimes: (i) High rPPG /
low rBCG quality — rPPG dominates; (ii) High rBCG
/ low rPPG quality — rBCG dominates; (iii) Both high
— both modalities achieve low error and the boun-
dary passes near the line of equality, so either choice
performs well; and (iv) Both low — both errors are
high, suggesting that no-return or re-measurement
criteria may be appropriate. In the complementary
“difference-surface” view, the surface lies at approxi-
mately 45° to the quality axes, indicating that—after
normalization—the two quality measures contribute
comparably to error discrimination; a simple linear
decision rule (e.g., a weighted difference of normali-
zed qualities) is therefore well-justified. These plots
provide construct validity for the selection strategy:
(a) the consistent inverse relationship between qu-
ality and error supports the use of deterministic, si-
gnal-processing—based quality metrics; (b) the clear
intersection ridge yields a stable, interpretable deci-
sion boundary rather than an ad-hoc threshold; and
(c) the geometry of the difference surface explains
why the “best-of” selector improves aggregate SDNN
and HR accuracy

MAE

boundary: on one side the rBCG modality is expected
to yield the lower SDNN error, and on the other side
rPPG; the algorithm selects the corresponding mo-
dality for the final estimate.
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Figure 8B. shows the relationship between the rBCG
and rPPG quality metrics and their mean HR errors.
The two error surfaces are clearly correlated and in-
tersect along a curve that serves as a decision boun-
dary: on one side the rBCG modality is expected to
yield the lower HR error, and on the other side rPPG;
the algorithm selects the corresponding modality for
the final estimate.

Figure 9A and Figure 9B show an equivalent repre-
sentation in which a single surface maps the diffe-
rence in errors between the two modalities onto the
quality plane (QrPPG’QrBCG)’ e.g., ErPPG_ErBCGE

» The sign is immediately decision-relevant: ne-
gative values (under this definition) indicate rPPG
has the lower error; positive values indicate rBCG
is more accurate. The absolute magnitude |E ,, -
E ..l canbe read as a confidence measure: the lar-
ger it is, the clearer the advantage of one modality.
» The surface lies at roughly 45° to the quality
axes. After normalizing the quality metrics, this
means both quality measures contribute compa-
rably to discriminating which modality yields the
lower error. Consequently, a simple linear decision
rule—such as comparing normalized qualities or
using a weighted difference—is well-justified.

Algorithmically:
» The decision boundary (where the error diffe-
rence = 0) runs close to the line of equal quality
Q,ppc=Q,5cco- On one side the selector should cho-

ose rPPG; on the other, rBCG.
» When both qualities are high, the difference in

errors is typically small (both methods perform
well), so the choice is low-risk.

» When both qualities are low, both errors tend to
be high and the difference may be unstable; this is
a natural region for no-return / re-measurement
policies.

» Inpractice, introducing a small margin & around
the boundary (i.e., abstain when |E_, -E _ __[<d| re-
duces misclassifications in the uncertainty zone.

Practical implications.
(1) A simple linear selector is adequate because
the two quality metrics are similarly informative.
(2) A confidence score can be derived directly from
|ErPPG_ErBCG|' . ) .
(3) Measurement policy (repeat/adjust conditions)
should trigger when both qualities are low or the
error difference is small, i.e., near the decision bo-
undary.
Legend:
* Qe Qice normalized quality metrics
(scale 0—1 or 0-100).
* E oo Epcoe -~ SDNN error [ms].
* AE=E , -E_ . error-difference surface;

AE<0 = rPPG has lower error,

AE>0= rBCG has lower error.
» Decision boundary: AE=0
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Figure 9A presents an equivalent view in which the
surface represents the difference between the two
errors; in this representation, the surface lies at ap-
proximately 45° to the quality plane, supporting the
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Figure 9A presents an equivalent view in which the
surface represents the difference between the two
errors; in this representation, the surface lies at ap-
proximately 45° to the quality plane, supporting the
conclusion that the quality measures are informati-
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conclusion that the quality measures are informati-
ve indicators of the lower-error modality. This plot is
shown for the SDNN measure of HRV.
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2.6 Statistical analysis



3. Results

3.1 rPPG: Agreement with Ground Truth and Dependence on Quality
(HR and SDNN)

Figure 10. Heart rate and heart rate variability (SDNN) measured by rPPG: predicted vs. ground truth, colo-
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Figure 11A. Heart rate variability (SDNN) measured by rPPG: Error vs. confidence: scatter with linear trend
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For heart rate (HR), rPPG predictions showed excel-
lent agreement with the reference, with MAE 0.37
bpm, RMSE 1.85 bpm, and negligible bias 0.05 bpm;
the correlation was R = 0.99 (R? = 0.98). For SDNN,
accuracy was lower but remained clinically useful
(MAE 5.85 ms, RMSE 13.63 ms, bias 0.32 ms; R =0.69,
R? = 0.48). Points colored by the rPPG quality score
cluster around the identity line at high quality and
disperse at lower quality. The absolute error demon-
strated a consistent negative correlation with quality

(Spearman p = —0.40 for HR; -0.45 for SDNN). When
analyses were restricted to high-quality windows
(e.g.,9>0.95Q \ge 0.95Q>0.95), error decreased mar-
kedly (MAE HR: 0.07 bpm vs 0.73 bpm at low Q; MAE
SDNN: 2.00 ms vs 10.64 ms). Complementary “error
vs confidence” plots (n = 5,311) showed a monotonic
decline of the mean error with increasing confiden-
ce and progressive narrowing of dispersion (IQR,
whiskers), supporting the use of quality thresholds
or confidence flags in downstream applications.

3.2 rBCG: Agreement with Ground Truth and Dependence on Quality (HR and

SDNN)
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Figure 12. Heart rate and heart rate variability (SDNN) measured by rBPG: predicted vs. ground truth, co-

lored by confidence; fits for all, low Q, and high Q.
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Error vs. Confidence (n=5311)
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Figure 13B. Heart rate variability (SDNN) measured by rBPG: Error vs. confidence: scatter with linear trend
and Error vs. confidence: binned mean with IQR and 20-80% whiskers (with bin counts).

Aggregate rBCG accuracy was lower than rPPG, par-
ticularly at low quality. For HR, overall MAE was 3.57
bpm (RMSE 7.14 bpm, bias 1.11 bpm; R = 0.82, R? =
0.68). For SDNN, overall MAE was 30.59 ms (RMSE
44.13 ms, bias 29.95 ms; R = 0.28, R? = 0.08). Never-
theless, rBCG performance improved sharply at high
quality: MAE HR fell from 8.51 bpm (low Q) to 0.43
bpm (high Q), and MAE SDNN from 64.41 ms to 6.71
ms. The error—quality relationship was strongly ne-
gatively correlated (Spearman p ~ —0.77 for HR; -0.80

for SDNN). The corresponding “error vs confidence”
plots again showed a near-linear decrease of mean
error with increasing confidence and reduced disper-
sion at higher QQQ, indicating that quality-gated
rBCG can yield reliable estimates in a substantial
fraction of windows despite weaker aggregate per-
formance. These results provide the empirical basis
for the subsequent best-of (quality-driven) modali-
ty selection, whereby rBCG is preferentially used in
conditions where its confidence is high.

3.3. Confidence, error, and outcome of the quality-driven selection
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Figure 14A. The distributions of SDNN errors and quality scores for each modality (rPPG and rBCG). Ap-
plying the optimal-selection algorithm improves the final SDNN prediction accuracy by approximately 7%.



For SDNN, the confidence distributions differ
markedly between modalities: rPPG exhibits a high
central tendency (median around 0.90), where-

as rBCG is centered lower (median around 0.64).
The SDNN error distributions mirror this pattern:
rPPG MAE = 6.314 ms, markedly below rBCG MAE =
35.636 ms. Applying the best-of (quality-driven) se-
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lector over all windows results in rPPG being chosen
in 5,119/5,311 cases (96%) and rBCG in 192/5,311
(4%), yielding a final MAE of 5.876 ms. These sum-
maries indicate that, in aggregate, rPPG attains both
higher quality and lower SDNN error, while rBCG
contributes selectively in a minority of cases where
its quality is sufficient.
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Figure 14B. The distributions of HR errors and quality scores for each modality (rPPG and rBCG). Applying
the optimal-selection algorithm improves the final HR prediction accuracy by approximately 3%.

For Heart Rate (HR), the confidence distributions
differ between modalities: rPPG exhibits a higher
central tendency (median around 0.90), whereas
rBCG is centered lower (median around 0.64). The
HR error distributions follow the same pattern: rPPG
MAE = 0.445 bpm, which is substantially lower than
rBCG MAE = 3.518 bpm. Applying the best-of (quali-

ty-driven) selector over all windows results in rPPG
being chosen in 5,122/5,303 cases (97%) and rBCG in
181/5,303 cases (3%), yielding a final MAE of 0.432
bpm. These results indicate that, overall, rPPG achie-
ves both higher quality and lower HR error, while
rBCG contributes selectively in rare cases where its
signal quality is comparatively better.

3.4. Modality-specific SDNN and HR error by Fitzpatrick phototype (III-VI)
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Figure 15A . Modality-specific SDNN error distribu-
tions stratified by Fitzpatrick skin type (III-VI). Two
findings are evident: (1) rPPG error increases with
higher Fitzpatrick types (darker skin), whereas rBCG
error shows little dependence on skin type; (2) con-
sequently, the modality-selection algorithm yields
larger gains at higher Fitzpatrick types by favoring
rBCG. At type VI, the improvement is approxima-
tely 18%, compared with an average improvement of
about 7% across the cohort.

Stratification by skin phototype shows a monotonic
increase of rPPG error with darker phototypes, whi-

le rBCG error remains relatively flat. Reported MAE
(ms) by type:

» Type III: rPPG 3.0, rBCG 31.5

e Type IV: rPPG 6.0, rBCG 36.0

» Type V: rPPG 13.3,rBCG 42.6

e Type VI: rPPG 17.7, rBCG 40.4

These data confirm pigmentation-related degra-
dation for rPPG and relative invariance for rBCG,
supporting the rationale for modality selection con-
ditioned on quality
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Figure 15B. Modality-specific HR error distributions
stratified by Fitzpatrick skin type (III-VI). Two fin-
dings are evident: (1) rPPG error increases monoto-
nically with darker skin tones, whereas rBCG error
remains comparatively stable across skin types; (2)
as a consequence, the modality-selection algorithm
is expected to yield larger benefits in darker skin to-
nes by favoring rBCG whenever its quality surpasses
rPPG.

Stratification by skin phototype shows this clear
trend, with mean absolute error (MAE, bpm) by type:

« Type III: rPPG = 0.165, rBCG = 2.782

e Type IV: rPPG = 0.384, rBCG = 3.566

e Type V: rPPG = 1.173, rBCG = 4.665

e Type VI: rPPG = 1.279, rBCG = 4.764
These data confirm pigmentation-related degrada-
tion for rPPG in HR estimation, while rBCG remains
relatively invariant across skin types. This pattern
supports the rationale for applying quality-conditio-
ned multimodal fusion to maintain accuracy in di-

verse populations.

Higher-quality selection: rBCG vs rPPG error by Fitzpatrick
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Figure 16A. Selected modality and resulting SDNN error by Fitzpatrick phototype



Across phototypes III-VI, the selection mechanism
chooses rPPG in the majority of windows, with the
share of rBCG selections increasing at higher photo-
types. The final SDNN error (MAE, ms) after selection
rises with phototype: 2.9 (Ill), 5.7 (IV), 11.6 (V), 14.5

(VI). Thus, although overall performance declines
with darker skin (driven by rPPG sensitivity), qu-
ality-gated selection maintains practical accuracy
and limits error growth by deferring to rBCG where
appropriate.
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Figure 16B. Selected modality and resulting HR error by Fitzpatrick phototype

Across phototypes III-VI, the selection mechanism
chooses rPPG in the vast majority of windows, with
the share of rBCG selections gradually increasing at
higher phototypes. The final HR error (MAE, bpm)
after selection also rises with phototype: 0.162 (III),

0.375 (IV), 1.100 (V), 1.209 (VI). Thus, although ove-
rall performance declines slightly with darker skin
(driven mainly by rPPG sensitivity), quality-gated
selection maintains practical accuracy and limits er-
ror growth by deferring to rBCG where appropriate.

Which error is lower by Fitzpatrick

n=1465 n=3068

100 A

80

60

40

Percent within Fitzpatrick type

20 A

0_

I v

n=593 n=169

\ Vi

Figure 17. Proportion of windows with lower error by modality (by phototype)



Within each phototype, the proportion of windows
where rPPG attains lower error than rBCG is: 89%
(111, 83% (1V), 81% (V), 73% (VI); conversely, rBCG is
better in 11%, 17%, 19%, and 27%, respectively. The

4. Discussion

This work extends the evidence base for camera-ba-
sed cardiophysiology by formalizing a signal-quali-
ty—driven selection mechanism between rPPG and
rBCG and by analyzing its behavior on the joint quali-
ty plane. The near-identity agreement of rPPG with
the reference for heart rate (HR) and the moderate
agreement for SDNN replicate the well-described
pattern in which optical methods recover rate with
higher fidelity than variability, the latter being in-
trinsically more sensitive to timing jitter and windo-
wing. rBCG, while weaker on average, offers comple-
mentary robustness when optical quality degrades,
reflecting its reliance on mechanical micro-motion
rather than chromatic changes. Two measurement
factors help explain this pattern. First, timing jitter—
small random perturbations in beat timing arising
from motion, frame-rate quantization, and peak-de-
tection error—adds variance to inter-beat intervals
and disproportionately inflates HRV error relative to
HR. Second, windowing—estimating metrics in finite
60-s segments—introduces dependence on window
length and placement; short windows increase esti-
mator variance and edge effects, whereas longer win-
dows improve stability at the cost of responsiveness.
The decision-surface analyses provide a mechanistic
account of why the selection strategy succeeds. After
normalization, the rPPG and rBCG quality metrics
contribute comparably to error discrimination, and
the intersection ridge between the two error surfa-
ces yields an explicit, stable decision boundary. This
geometry supports simple linear rules for selection
and motivates explicit abstention policies in regions
where both qualities are low. In decision-theoretic
terms, the selector approximates a risk-sensitive
policy that minimizes expected error subject to a
constraint on returning results only when quality
exceeds a task-specific threshold. In aggregate, the
“best-of” strategy improves SDNN accuracy by ap-
proximately 7%, with larger gains when one moda-
lity’s quality systematically degrades—for example,
at higher Fitzpatrick phototypes where rPPG quality
drops and the boundary shifts to favor rBCG (=18%
improvement at type VI). Practical control of the
operating point is possible by tuning the boundary
(or adding a small margin, d) to trade coverage aga-
inst accuracy in low-quality regions.

Subgroup analyses across Fitzpatrick phototypes de-
monstrate that rPPG error increases with higher pig-
mentation, whereas rBCG shows limited dependence
on phototype. The quality-aware selector therefore
reallocates weight toward rBCG as phototype incre-

increasing share of rBCG wins with higher phototype
quantifies the modality shift implied by the quality
metrics and supports the best-of strategy as photo-
type increases.

ases, mitigating a well-documented equity concern
of optical sensing. Importantly, the residual increase
in error at the highest phototypes indicates that se-
lection alone does not fully close the gap, pointing
to opportunities for improved signal modeling, illu-
mination control, sensor/ISP tuning, and diversifica-
tion of training data.

In addition to the SDNN-focused analyses, the pre-
sent results for Heart Rate (HR) warrant explicit di-
scussion. HR estimation by rPPG demonstrated near-
-identity agreement with the reference, with overall
MAE well below 0.5 bpm and correlation above 0.98.
In contrast, rBCG alone yielded higher aggregate er-
ror (MAE = 3.5 bpm), yet its performance improved
markedly when quality was high. Importantly, the
quality-driven selection mechanism reduced the fi-
nal HR error to 0.43 bpm, confirming that the same
selection logic effective for SDNN also benefits HR,
albeit with smaller absolute gains (~3% improve-
ment).

Subgroup analyses by Fitzpatrick phototype further
revealed that rPPG HR error rises slightly with incre-
asing pigmentation, from 0.16 bpm (Type III) to 1.28
bpm (Type VI). rBCG error remained more stable
across phototypes but consistently higher (=2.8-4.8
bpm). The best-of selection therefore continued to
favor rPPG in the vast majority of windows (>95%),
but with a growing share of rBCG contributions at
darker skin tones. This adaptive reallocation limi-
ted the increase in final HR error across phototypes,
which remained below 1.3 bpm even at Type VI.
These HR-specific findings extend the general conc-
lusion that rPPG provides superior accuracy under
favorable conditions, while rBCG contributes selec-
tively when rPPG quality degrades. They also highli-
ght that quality-gated selection mitigates, though
does not entirely eliminate, the performance gap at
higher phototypes. Together with the SDNN results,
these observations strengthen the rationale for mul-
timodal, quality-aware cardiophysiological monito-
ring.

Operationally, coupling each estimate with its qu-
ality enables several practical controls aligned with
clinical expectations: quality thresholds to con-
strain error; dynamic re-record prompts when both
qualities are low; and user-facing confidence labels
to support interpretation. Calibrating the mapping
from quality to expected error—e.g., via isotonic or
Platt-style calibration on held-out data—would al-
low quality to be treated as a probabilistic reliabili-



ty score, improving transparency for end users and
enabling scenario-specific operating points (e.g.,
high-sensitivity versus high-specificity settings).
Reporting a per-window quality-derived confidence
alongside SDNN and heart rate provides transparent,
actionable uncertainty estimates.

Methodologically, selection and fusion should be
viewed as complementary. The present results show
that selection alone yields measurable gains; howe-
ver, in regions where both modalities have interme-
diate quality, weighted fusion (with weights derived
from calibrated quality) may reduce variance relati-
ve to either modality alone. A hierarchical policy—
abstain when both qualities are poor; select when

4.1 Limitations of the Study

This evaluation was conducted under controlled, se-
ated conditions with uniform frontal illumination
and short (*60-s) recordings. Performance in uncon-
strained environments—variable lighting, head pose
changes, background motion, and hand-held captu-
re—was not directly assessed. Consequently, error
rates reported here likely underestimate worst-case
performance in the wild, and additional validation is
required to quantify robustness under everyday use.
Ground truth was derived exclusively from trans-
missive pulse oximetry; heart rate and inter-beat
intervals were computed from the photoplethysmo-
graphic waveform with synchronized timestamps.
The absence of an ECG reference precludes characte-
rization of timing offsets relative to electrical R-pe-
aks and limits assessment of arrhythmias or ectopy.
Although pulse oximetry is an accepted reference for
HR and IBI at rest, latency and morphology differen-
ces (e.g., variability in pulse transit time) may intro-
duce small systematic biases. A prospective study
including a harmonized multi-lead ECG and unified
synchronization would reduce this source of error
and more fully characterize timing performance.

The demographic composition was skewed toward
Fitzpatrick phototypes III-1V, with incidental repre-
sentation of I-II and more limited representation of
V-VI. As a result, precision of subgroup estimates is
lower for the rarest categories; the residual elevation
of error in darker phototypes should therefore be in-

5. Conclusions

A quality-driven “best-of” selection between rPPG
and rBCG enables reliable camera-based estimation
of HR and SDNN from =~60 s recordings with pulse-
-oximetry ground truth (shorter measurement times
of 30s and 45s are also possible). rPPG provides ne-
ar-identity HR and accurate SDNN at high confiden-
ce, while rBCG contributes when optical quality de-
grades. Quality scores are consistently negatively
correlated with error, and the intersection of the

one clearly dominates; fuse when both are modera-
te—offers a principled roadmap for future iterations
without sacrificing interpretability.

Finally, robust deployment will depend on genera-
lization beyond the controlled setting used here.
Cross-device and cross-environment calibration,
sensitivity to image signal-processing pipelines, and
temporal stability across repeated measures warrant
systematic study. Extending validation to additional
HRV endpoints (e.g., RMSSD, frequency-domain me-
trics) and to clinical cohorts characterized by arrhy-
thmia or low perfusion will clarify the scope of safe
use and the residual failure modes of camera-based
cardiophysiology.

terpreted with appropriate uncertainty.

Exclusion criteria removed clinically important gro-
ups (e.g., significant anemia, heart failure, marked re-
spiratory compromise, pacemaker carriers), limiting
generalizability to high-risk populations. Further-
more, participants were recorded at rest; the effect
of exercise, talking, or facial expressions—common
in telehealth—was not examined.

Only SDNN was analyzed as the HRV endpoint. Other
time-domain (e.g., RMSSD, pNN50) and frequency-
-domain measures (e.g., LF/HF) may respond diffe-
rently to camera-based sensing and to the selection
policy. We did not evaluate beat-to-beat timing er-
rors relative to ECG fiducials, nor did we assess ar-
rhythmia detection.

All data were collected with a single smartphone/
lighting configuration. Cross-device and cross-ISP
(image signal processing) robustness, frame-rate
sensitivity, compression effects, and generalization
to different camera geometries were not systemati-
cally studied.

Finally, statistical analyses focused on point esti-
mates (MAE/RMSE) without full uncertainty quan-
tification at the subject level. Test-retest reliability,
day-to-day within-subject variability, and potential
confounders (caffeine, recent exercise, medications)
were not captured, precluding stability analyses over
time.

modality-specific error surfaces on the joint quality
plane yields a stable, interpretable decision bounda-
ry that justifies simple selection. At the population
level, the policy improves SDNN by ~7% overall and
~18% at Fitzpatrick VI, mitigating skin-tone-related
disparities while preserving rPPG’s HR accuracy un-
der favorable conditions. In practice, systems sho-
uld pair each output with a quality score, abstain or
prompt a brief re-recording when quality is low, and



tune a small margin (6) around the decision boun-
dary to balance accuracy and coverage; future work
should calibrate quality-to-error mappings, evaluate

6. Summary

Remote photoplethysmography (rPPG) and ballisto-
cardiography (rBCG) enable contactless monitoring
of cardiovascular function but each modality has
inherent limitations. rPPG offers high accuracy for
heart rate (HR) but is sensitive to lighting and skin
pigmentation, while rBCG is less affected by these
factors yet noisier overall. Shen.Al developed a mul-
timodal, quality-driven selection algorithm that dy-
namically chooses the modality with the higher con-
fidence score to optimize performance.

In a cohort of 5,311 participants (mean age 53.8
years, 64.7% female), simultaneous rPPG, rBCG, and
pulse oximetry reference recordings were analyzed.
rPPG achieved near-identity agreement for HR (MAE

6.1 Take home message

This study demonstrates that remote photoplethy-
smography (rPPG) provides highly accurate heart
rate estimation, while remote ballistocardiography
(rBCG) offers complementary robustness when rPPG
quality degrades, particularly in darker skin tones.
By leveraging quality metrics, Shen.Al’s multimo-
dal “best-of” selection algorithm dynamically cho-
oses the most reliable modality, reducing errors

selection-plus-fusion policies, and extend validation
across devices, environments, and HRV endpoints.

= 0.37 bpm, R = 0.99), while rBCG showed higher er-
ror (MAE = 3.6 bpm) but improved substantially un-
der high-quality conditions. For HRV (SDNN), rPPG
again outperformed rBCG (MAE = 6 ms vs 36 ms).
Applying the best-of selector reduced errors by ~3%
for HR and ~7% for SDNN. Stratification by Fitzpa-
trick skin type confirmed rising rPPG error with dar-
ker phototypes, while rBCG remained stable; selec-
tion mitigated disparities, with SDNN improvement
reaching ~18% at type VI.

This multimodal strategy ensures robust and equita-
ble contactless monitoring of HR and HRV across di-
verse populations.

by ~3% for HR and ~7% for HRV (SDNN). In darker
phototypes, improvements were even larger (=18%
for SDNN). These results confirm that multimodal,
quality-aware cardiophysiology can deliver reliable
and equitable contactless monitoring across diverse
populations, supporting broader telemedicine and
preventive healthcare applications.



